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Abstract

 
Within Multi-Criteria Decision Analysis, pairwise comparison facilitates a separation of concerns helping to 

accurately represent a decision maker’s preferences. Inconsistency within a set of pairwise comparisons has 

adverse effects upon the accuracy of the preferences derived from them. Inconsistency within pairwise 

comparisons is almost inevitable, hence consideration of its reduction is essential. This paper presents INSITE, 

an approach to inconsistency reduction within a set of pairwise comparisons via multi-objective optimisation. 

When seeking to reduce inconsistency within a set of pairwise comparisons there is a trade-off between 

alteration to the comparisons and the reduction of inconsistency within them. For such trade-offs no trade-off 

solution is superior per se to the others. Therefore, INSITE seeks to optimally reduce inconsistency within a 

set of comparisons by modelling inconsistency and alteration as separate objectives. In this way the nature of 

the trade-offs between inconsistency reduction and alteration are revealed, thus better informing a decision 

maker’s awareness and knowledge of the problem and increasing validity of outcomes by providing a more 

evidential, transparent, auditable and traceable process. In this way a decision maker can look to make a more 

informed choice of the level of trade-off that is most suitable for them. INSITE is flexible regarding how 

inconsistency within judgments is measured; alteration to a decision maker’s views is modelled via fine-

grained measures of compromise that seek to be meaningful and relevant. Furthermore, the approach allows a 

decision maker to set constraints on both inconsistency and measures of compromise objectives. 

 
Keywords: Multi criteria analysis, Pairwise comparisons, Inconsistency, Multi-objective optimization; 

Analytic Hierarchy Process 

1 Introduction 
 

Multi-Criteria Decision Analysis (MCDA) seeks to determine the suitability of alternatives of a decision 

with respect to multiple criteria. The concept of Pairwise Comparison (PC) is employed within many MCDA 

methods (Hwang & Yoon, 1981; Saaty, 1980, 2001); PC enables decomposition of a larger decision problem 

into more manageable smaller chunks, facilitating a separation of concerns that ensures an accurate extraction 

of the preferences of a Decision Maker (DM). For a set of elements under consideration, a PC judgment can 

be made for each pair of elements and from this set of comparison judgments a one-dimensional ranking of 

the elements, a Preference Vector, can be derived representing a ranking of the set of elements under 

consideration by the DM. 

DMs are subject to fragilities, such as biases, inconsistencies and irrationalities, in their views (French, 

Maule, & Papamichail, 2009). Within a set of PCs, the unification of the smaller chunks of each PC judgment 

may result in inconsistency being present in the set of judgments as a whole. Inconsistency within PC used for 

consideration of more than a handful of elements is almost inevitable (Choo & Wedley, 2004). When 

inconsistency is present in a set of judgments, any preference vector derived will only be an estimate of the 

judgments’ information. Therefore, inconsistency within a set of judgments can adversely affect the accuracy 

of a resulting ranking, so consideration of its reduction is important in deriving a more accurate preference 

vector from a DM’s views. Furthermore, tackling the problem of inconsistency with emphasis upon traceability 

should facilitate greater validity of outcomes for a DM by providing more explanation and greater clarity of 

the decision process.   

In this paper we present INSITE (reducINg inconSIsTency in dEcision making) - a flexible and traceable 

approach to reducing inconsistency within a set of PC judgments via Multi-objective Optimisation (MOO).  
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When seeking to reduce inconsistency within a set of pairwise comparisons there is a trade-off between 

alteration to the judgments and the reduction of inconsistency within them. Previous approaches to 

inconsistency reduction within a set of PCs facilitate little traceability and offer no consideration of seeking to 

reveal to a DM the nature of trade-offs between inconsistency reduction and alteration to his/her judgments. 

Moreover, they offer a DM no control over how inconsistency is measured, with little consideration of 

alteration to the judgments in terms of measurements of semantic relevance to the DM. INSITE seeks to 

optimally reduce inconsistency within a set of DM judgments through modelling inconsistency and alteration 

as separate objectives via MOO. Within INSITE, measurement of inconsistency is adaptive to different user 

preferences and scenarios. Alteration to a DM’s judgments is modelled via measures of compromise, that seek 

to be semantically meaningful such that a DM can comprehend and relate to them, thus enhancing the 

knowledge that can be gleaned from the inconsistency reduction process and hence increase understanding of 

the decision process. Furthermore, INSITE facilitates the setting of constraints defined by the DM both on 

inconsistency and alteration objectives.  

For such trade-off multi-objective problems, without additional information, no trade-off solution is 

superior per se to the others (Coello, 2006). Therefore, the philosophy of INSITE is to allow a DM to glean 

knowledge with regards to the trade-offs. Modelling inconsistency via MOO elucidates, and informs the DM 

of, the trade-offs between reducing inconsistency and altering DM judgments, thereby enhancing 

understanding of both the problem and its solution space. In this way, INSITE should facilitate greater validity 

of outcomes by providing more evidence of what is involved in the inconsistency reduction process.    

In tackling the problem of inconsistency reduction within a set of DM judgments INSITE, significantly 

extends work in (Abel, Mikhailov, & Keane, 2013), by looking to optimally reduce inconsistency within a set 

of DM judgments by modelling inconsistency and alteration to a DM’s judgments as separate objectives via 

MOO. Specifically, in expanding the preliminary work we make the following contributions: 

 Defining the mathematical formulation of the objective model for inconsistency reduction via MOO within 

INSITE;  

 Facilitating the setting of DM-defined constraints both on inconsistency and alteration objectives;  

 Presenting various experimentation evaluating the approach by exploring:  

o Explicit comparison and evaluation of INSITE to four other approaches to inconsistency 

reduction;  

o The use of constraints to aid a DM to interactively explore the objective space and hone in on a 

specific solution in the objective space;  

o Analysis of the nature of trade-off fronts for different inconsistency measures and exploring the 

effects of using different measures of compromise;  

o How a DM could utilise multiple measures of compromise simultaneously and/or utilise multiple 

measures of inconsistency simultaneously.  

 Incorporating a larger set of inconsistency measures usable by a DM to measure inconsistency reduction. 

Furthermore, a more comprehensive and up-to-date literature review is presented, to help frame and clarify 

how INSITE seeks to innovatively tackle the problem of inconsistency reduction. 

The rest of the paper is structured as follows: Section 2 reviews the literature regarding measuring and 

reducing inconsistency within a set of PCs; INSITE is then outlined in Section 3; examples are discussed in 

Section 4; finally, conclusions are presented in Section 5.  

2 Inconsistency Reduction in PC  
 

PC enables a DM to only consider a pair of decision elements and to determine their preference, and 

strength of preference, between the pair, with respect to an intangible factor. This segmentation of a larger 

decision problem is achieved through use of the Law of Comparative Judgment (Thurstone, 1927). This ability 

to take only a pair of elements of a decision at a time, helps to achieve a separation of concerns for the DM 

and assists them in achieving a more accurate reflection of their judgments (Saaty, 2008; van Til, Groothuis-

Oudshoorn, Lieferink, Dolan, & Goetghebeur, 2014). 

Given two elements x and y, we denote that the DM prefers element x to element y with the notation x y. 

Various numerical scales may be utilized to represent the strength of preference; the most widely utilized being 

the Saaty 1-9 scale (Saaty, 1977), where, for example, if element x is preferred 3 times more than element y, 

this can be denoted as x y with a preference strength of 3. If neither element is preferred over the other, the 

elements are said to be equally preferred, denoted by x∼y and the preference strength is represented with the 
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value 1. Various other scales of differing preference strength intervals have been proposed in the literature, see 

(Harker & Vargas, 1987; Ishizaka, Balkenborg, & Kaplan, 2011; Lootsma, 1989). 

The set of PCs, one for each pairing of elements in a set of elements, along with the self-comparison 

values and the reciprocal values, can be collated into a two-dimensional Pairwise Comparison Matrix (PCM), 

as shown for PCM P in (1) for a set of n elements, where 𝑎𝑖𝑗 represents a PC between elements i and j. 
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For a completed PCM of the type (1) of (n x n) elements, there exists a preference vector 𝑤 = [𝑤1,𝑤2,…𝑤𝑛,]
𝑇, 

where 𝑤𝑖 represents the weighting of the element 𝑖 for 𝑖 = 1 𝑡𝑜 𝑛. A preference vector ranking of the n 

elements can be derived through the use of a Prioritization Method. Many Prioritization Methods exist for this 

task; see (Choo & Wedley, 2004) for a comprehensive discussion. 

2.1 Inconsistency 
 

The consistency of a PCM is the extent to which its set of judgments are coherent. When there is 

inconsistency present in a PCM, any preference vector derived from it will only be an estimate of its implicit 

ranking information (Choo & Wedley, 2004). Consequently, different prioritization methods may derive 

different preference vector estimates. The greater the amount of inconsistency present, the less accurately the 

derived preference vector represents the PCM’s judgment information. Approximations of highly inconsistent 

PCMs produce large errors, hence “approximations from such matrixes make little practical sense” 

(Koczkodaj & Szarek, 2010). Inconsistency within a PCM of more than a handful of elements is almost 

inevitable (Choo & Wedley, 2004) and therefore needs to be considered. 

Inconsistency within a set of PC judgments may be categorized as either ordinal or cardinal, both being 

important considerations for a DM. Ordinal inconsistency identifies inconsistent information without the 

strengths of preference of the DM’s judgments being considered. For example, given a set of 3 elements, x, y 

and z: if x ≻ y, y ≻ z and z ≻ x, then the judgments are intransitive and contradictory, and ordinal inconsistency 

is present. Ordinal inconsistency can also be present within a set of judgments containing equal preference 

judgments. For example, if x and y are equally preferred (x ~ y) then for the set of judgments to be ordinally 

consistent the remaining judgments must be: x ≻ z, and y ≻ z, or x ≺ z, y ≺ z, or x ~ z, y ~ z. Cardinal 

inconsistency identifies inconsistency between a set of judgments taking into account the strength of preference 

of each judgment. For a set of judgments to be cardinally consistent then each judgment j should maintain 

transitivity - that is, the relation between a first element and a second and between a second element and a third 

should hold between the first and third. For example, considering a set of 3 elements x, y and z: if x ≻ y with a 

preference strength of a and y ≻ z with a preference strength of b, then, for the judgment set to be cardinally 

consistent, the final judgment between elements x and z would need to be such that x ≻ z with a preference 

strength of a*b.  

Next we discuss various measures that quantify the level of inconsistency within a set of judgments. 

2.1.1 Inconsistency measures  

 

A number of ways to measure inconsistency within a set of PC judgments have been proposed. INSITE 

implements multiple inconsistency measures so as to be adaptive to different DM preferences and scenarios.  

2.1.1.1 3-Way Cycles 

 

The number of 3-way cycles present within a PCM is an ordinal measure of inconsistency. A measure 

proposed in (Gass, 1998) formulates the problem as a tournament ranking (with 0 and 1 utilised to represent 

judgments as losses and wins respectively), without consideration of preference equivalence. Alternatively, 

the presence of 3-way cycles, including consideration of equal preference judgments, can be determined via 

an algorithm (Kwiesielewicz & van Uden, 2004). This can be utilized to determine the total number of 3-way 

cycles within a PCM, usually denoted as L. We only need to consider cycles of 3 elements as it has been shown 

that eliminating all 3-way cycles ensures elimination of cycles of higher orders (Harary & Moser, 1966).  
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2.1.1.2 Consistency Ratio 

 

The Consistency Ratio (CR) proposed in (Saaty, 1977) is a measure of the amount of cardinal 

inconsistency present within a PCM. Firstly, the eigenvalue of the largest eigenvector of the PCM (λ𝑚𝑎𝑥) is 

calculated. When an order 𝑛 PCM is perfectly consistent then λ𝑚𝑎𝑥 = 𝑛. Next, the Inconsistency Index (CI) 

of the PCM is determined.  

 
 

𝐶𝐼 =  
( λ𝑚𝑎𝑥 − 𝑛)

(𝑛 − 1)
⁄  

(2) 

 

The CR is then found by dividing the CI by the Random Consistency Index (RI) for the order of the PCM. The 

RI values represent the average inconsistency found over 50,000 trials of randomly generated matrixes for 

each PCM order, see (Saaty, 1980). 

 
 𝐶𝑅 =  CI 𝑅𝐼⁄  (3) 

 

The lower the CR value, the lower the amount of cardinal inconsistency present in the PCM. Saaty further 

proposed an acceptability threshold value of a PCM’s CR value (Saaty, 1980). The threshold is designed to be 

an indicator as to whether a PCM is consistent enough for a satisfactory preference vector estimate to be 

derived. Using this threshold, when a PCM has a CR value of 0.1 or less, it is considered to be acceptable. It 

has been argued that the choice of the 0.1 threshold to determine an acceptable level of inconsistency is 

arbitrary and not based upon solid foundations (Koczkodaj, 1993). Therefore, giving a DM control over such 

a threshold is likely to be beneficial.  

2.1.1.3 Consistency Measure 

  

The Consistency Measure (CM), proposed in (Koczkodaj, 1993) and generalised in (Duszak & 

Koczkodaj, 1994), is a cardinal inconsistency measure based upon the transitive properties of a set of 

judgments. CM is a more fine-grained alternative of the CR measure that considers the inconsistency between 

each triple of judgments, to identify the set of triple judgments that are the most inconsistent. Considering each 

possible set of 3 judgments at a time CM determines the inconsistency of a triple of judgments between 

elements x, y and z via: 

 

 
𝐶𝑀𝑥𝑦𝑧 =  min (

|𝑗𝑥𝑦 − 𝑗𝑥𝑧𝑗𝑧𝑦|

𝑗𝑥𝑦
,
|𝑗𝑥𝑦 − 𝑗𝑥𝑧𝑗𝑧𝑦|

𝑗𝑥𝑧𝑗𝑧𝑦
) 

(4) 

 

CM gives not just a measure of inconsistency but also identification of where the highest levels of 

inconsistency within the set of judgments occurs. 

2.1.1.4 Geometric Consistency Index 

 

The Geometric consistency Index (GCI) (Aguarón & Moreno-Jiménez, 2003) is an inconsistency measure 

based upon the distance between a preference vector derived using the Geometric Mean (GM) prioritization 

method (Crawford, 1987) and the original judgments. GCI is calculated via:  

 

 

 𝐺𝐶𝐼 =  
2

𝑛(𝑛 − 1)
∑ ∑ (𝑙𝑜𝑔𝑎𝑖𝑗 − log (

𝑤𝑖
𝑤𝑗
))2

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

  
 

(5) 

 

where 𝑤𝑖 is the ranking value for element i in the preference vector derived from the GM prioritization method. 

Comparison of GCI and CR showed them to have an almost linear relationship (Aguarón & Moreno-Jiménez, 

2003). A threshold of acceptability of GCI has also been proposed (Aguarón & Moreno-Jiménez, 2003), when 

n=3 GCI ≤ 0.31, n=4 GCI ≤ 0.35, when n>4 GCI ≤ 0.37.   

2.1.2 Previous approaches to Inconsistency Reduction 
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There are various ways to tackle inconsistency, such as (1) getting the DM to review their judgments; (2) 

automatically altering the judgments; and (3) proceeding but attempting to take the inconsistency knowledge 

into consideration. INSITE is focused upon the second of these. Various approaches have been proposed to 

seek to automatically reduce inconsistency within a set of judgments. 

A convergence algorithm approach was proposed in (Xu & Wei, 1999) which obtains an altered PCM 

that has a CR measure below a threshold (CR < 0.1). The approach can alternatively be applied iteratively to 

reduce CR to 0. The algorithm looks to find a cardinally consistent altered PCM as a single objective whilst 

seeking to ensure the amount of departure from the original judgments is below given ranges (via hard 

constraints). Given that values of a found altered PCM solution are composed of judgment values that fall 

outside of the original judgment scale, it may be difficult for a DM to comprehend how their judgments have 

changed. Additionally, the constraints used to measure departure from the original judgments are likely to be 

difficult for a DM to semantically comprehend and relate to with regard to how their judgments have changed, 

obfuscating understanding of the process. Furthermore, as alteration is used only as a constraint there is no 

explicit consideration of minimizing the amount of alteration in pursuit of inconsistency reduction.  

A similar convergence algorithm approach was proposed in (Cao, Leung, & Law, 2008). Again, only the 

cardinal inconsistency measure CR is considered with the aim to find a solution below a threshold (CR < 0.1). 

The values of altered PCMs found are composed of judgment values that fall outside of the original scale 

utilised, which again hider a DM’s comprehension of how their judgments have altered. Alteration is 

considered (through similar calculations as defined in (Xu & Wei, 1999)) again as hard constraints to determine 

if the found altered PCMs are feasible. The alteration constraints to measure departure from the original 

judgments are again likely to be difficult for a DM to relate to with regard to how their judgments have 

changed.  

An approach to reducing ordinal inconsistency is proposed in (Siraj, Mikhailov, & Keane, 2012). This 

approach seeks to reduce the number of 3-way cycles within a PCM via an iterative process of judgment 

reversals. At each iteration it seeks to reverse a judgment that will result in the maximum reduction of 3-way 

cycles to converge to a solution PCM without any 3-way cycles. On each iteration the approach identifies the 

judgment which will have the most impact upon ordinal inconsistency reduction. Through removing ordinal 

inconsistency optimally, fewer iterations should be required and thus fewer reversals required to reach a set of 

fully consistent judgments. If multiple judgments represent the maximum reduction of 3-way cycles then 

cardinal inconsistency is considered only as a tiebreaker to determine which judgment is reversed. Here the 

cardinal inconsistency of a judgment is measured via the amount of discrepancy between the judgment’s 

strength and the measurement of indirect judgment strength. 

Inconsistency reduction has also been addressed by the approach in (Costa, 2011) which utilizes genetic 

algorithms. Only cardinal inconsistency (CR) is considered as a single objective to look to find solutions for 

which cardinal inconsistency is below a threshold, again CR < 0.1. The amount of alteration between found 

solutions and the original judgments is not explicitly considered. Additionally, solutions are modelled in such 

a way that the reciprocal property of the PCM is not always maintained in found solutions, which may 

introduce additional inconsistency into the judgments. The amount by which the reciprocal property is violated 

is defined via a user-set tolerance parameter. 

A genetic algorithm is also utilised in (Wang, Liu, & Pang, 2012) to reduce inconsistency of a PCM; here 

the PCM and the altered PCM are represented as fuzzy numbers. This approach only considers cardinal 

inconsistency looking to find a solution with a lower CR value. When evaluating solutions during optimisation, 

the CR of individuals and the alteration of the amount of change are considered as a single objective. 

Individuals with feasible CR are assigned a high evaluation value. Alteration is then considered only to rank 

the remaining solutions with CR 0.1 or higher.  

Similarly the approach in (Sun, Liu, & Zhang, 2011) looks to find an altered solution with reduced 

inconsistency considering only cardinal inconsistency. The approach looks to find altered solutions with the 

lowest value of CR measure. The approach models the problem as a non-linear programming model and a 

genetic algorithm is utilised to solve it. During the operation of the genetic algorithm individuals are evaluated 

via the level of cardinal inconsistency and consideration of alteration to the PCM via their combination into a 

single objective function. The level of CR is used to measure cardinal inconsistency and similarity between 

the initial PCM and the solution set is measured as a log-based calculation of the amount of change between 

the two judgments sets (Sun, Liu, & Zhang, 2011). The measure of alteration utilised is difficult for a DM to 

semantically interpret with respect to the alteration their judgments have undergone.  

Ant colony optimization is utilised within an approach to inconsistency reduction (Girsang, Tsai, & Yang, 

2015). Only cardinal inconsistency is considered, with the aim to find a solution with CR below 0.1 whilst also 

considering the amount of departure from the original judgments. These objectives are not considered 
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separately within MOO, rather the approach seeks to find a solution that satisfies the CR threshold for which 

the amount of departure from the original judgments is lowest. In this sense, CR is treated as a constraint. 

Departure of a solution from the initial judgments is measured by the difference index measure, which is hard 

for a DM to interpret and relate to his/her judgments. Solutions are found within the bounds of the scale 

utilized, however judgments can fall between the scale’s step values hindering comprehension by a DM of 

how their judgments have been altered. 

Inconsistency reduction for a PCM represented as either crisp or fuzzy numbers has been proposed in 

(Zhang, Sekhari, Ouzrout, & Bouras, 2014). Here inconsistency with respect to cardinal inconsistency is 

considered and linear programming is utilized to find a solution with lower CR whilst also considering the 

amount of departure from the original judgments. Inconsistency and alteration to judgments are considered via 

single objective optimization based on linear algebra. Departure from the original judgments is considered via 

measurements that are difficult for a DM to semantically interpret, and found solutions may contain judgments 

outside the original utilised scale. 

An approach in (Bozóki, Fülöp, & Poesz, 2015) tackles inconsistency reduction considering multiple 

measures of inconsistency, however only cardinal measures are considered. In the approach a single measure 

of alteration, the number of judgments that change, is considered. The approach, using nonlinear mixed-integer 

optimization, has two modes of operation that both seek to optimise a single objective given a constraint. The 

approach seeks to determine the minimum number of judgment changes required to reach a threshold value of 

inconsistency (0.1 when the CR measure is utilized).  Alternatively, the approach seeks to determine the 

minimal level of inconsistency that can be achieved given a constraint of the number of judgments that can 

change. As the approach only considers single objective optimisation, inconsistency reduction and alteration 

are not simultaneously optimised in either mode of operation. 

Some approaches look to consider both ordinal and cardinal inconsistency, such as the approach in (Li & 

Ma, 2007), which models a PCM via Gower plots to then determine the ordinal and cardinal inconsistency 

present. The approach then facilitates a DM to iteratively look to reduce ordinal and/or cardinal inconsistency 

in his/her judgments. Although the DM has the ability to tackle both ordinal and cardinal inconsistency it is 

via measures calculated in relation to the Gower plots offering the DM no control in choice of measures. 

Moreover, the two models, for reducing ordinal and cardinal inconsistency respectively, are optimised with 

respect to the Gower plot representations and seek solutions without consideration of their interpretability to 

the DM, making it harder to relate to with respect to his/her original judgments. In addition, there is no 

consideration of seeking to reveal to the DM the nature of trade-offs between inconsistency reduction and 

alteration to their judgments. 

Kou, Ergu, & Shang (2014) propose a method to tackle cardinal and ordinal inconsistency using an adapted 

Hadamard model. The approach presents a method which seeks to obtain an altered PCM that has a CR 

measure below a threshold (CR < 0.1). The DM’s judgments are transformed into a Hadamard product induced 

bias matrix (HPIBM). From this, the approach looks to determine the most (cardinally) inconsistent element, 

as the largest value in this new representation, then determine a more appropriate value, calculated based on 

information relating to indirect judgments between the set of judgments. If after the adjustment the PCM is 

still greater than 0.1, then the next most inconsistent judgment is iteratively chosen until the threshold is met. 

In seeking reduction to a pre-determined threshold there is no consideration of being able to reveal to the DM 

the nature of trade-offs between inconsistency reduction and alteration to their judgments. The approach can 

tackle ordinal inconsistency by looking to identify three-way cycles from the HPIBM and then look to 

eliminate all 3-way cycles by utilising information pertaining to indirect judgments.  

In summary, in approaches to alter the judgments in a PCM aiming to reduce inconsistency there is no 

consideration of seeking to reveal to the DM knowledge of the nature of trade-offs between inconsistency 

reduction and alteration to their judgments, from which a DM can look to make an informed choice of the level 

of trade-off that is most suitable for them. Moreover, approaches mostly focus upon either ordinal or cardinal 

inconsistency, and offer no facilities for a DM to explicitly choose how inconsistency is measured. When both 

ordinal and cardinal inconsistency are considered the DM cannot explicitly control the inconsistency reduction 

in terms of what is most important to them in terms of the inconsistency measures. Furthermore, when seeking 

to reduce inconsistency to a threshold value, most approaches offer no control for a DM to define the threshold 

value. When approaches consider alteration to the judgments in pursuit of inconsistency reduction it is not 

considered explicitly, but rather as part of a single objective or as a constraint. Additionally, when alteration 

is considered, little effort is made to provide semantically meaningful measurements to which a DM can relate. 

Furthermore, approaches offer no control for a DM to choose how alteration is measured to suit their 

preferences. Some approaches do not always maintain the reciprocal properly of the original PCM, and others 

find solutions with values outside the original judgment scale. INSITE seeks to address these limitations.  
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3 INSITE 
 

This section describes INSITE. Firstly, an overview of INSITE and a description of its stages are presented; 

next, how alteration to judgments in INSITE is modelled is discussed; a formal definition of INSITE is then 

presented, followed by discussions of its implementation.  

3.1 Overview of INSITE 
 

INSITE looks to optimally reduce inconsistency within a set of DM judgments by modelling 

inconsistency and alteration to a DM’s judgments as separate objectives via MOO. Specifically, this paper 

expands preliminary work by: defining a detailed mathematical formulation of the objective model for MOO 

inconsistency reduction and facilitating the setting of DM-defined constraints both on inconsistency and 

alteration objectives. Moreover, more complex examples are presented exploring: Explicit comparison to four 

other approaches to inconsistency reduction; the use of constraints to aid interactive exploration of the 

objective space by a DM to hone in on a specific solution; analysis of the nature of trade-offs for different 

inconsistency measures as well as the effects of using different measures of compromise; the use of multiple 

measures of compromise and/or utilise multiple measures of inconsistency simultaneously. Finally, a larger 

set of inconsistency measures is incorporated and usable by a DM to measure inconsistency reduction.    

When seeking to reduce inconsistency within a set of pairwise comparisons there is a trade-off between 

alteration to the judgments and the reduction of inconsistency within them. INSITE takes in a set of judgments 

from a DM and looks to find Altered Solutions, which are new judgment sets that will be derived from the 

MOO process. From a set of trade-off Altered Solutions for such a multi-objective problem no solution in 

superior to the others and, (without additional information), all solutions are equally preferred. Both cardinal 

and/or ordinal inconsistency can be considered, giving a DM control over the type of inconsistency reduction 

required. INSITE facilitates inconsistency reduction whilst also looking to minimise the amount of alteration 

to achieve the reduction. Alteration to judgments is explicitly considered in INSITE using measures of 

compromise, which are discussed in Section 3.2. The use of measures of compromise give a DM control over 

how alteration is measured to meet their needs. Moreover, they help a DM glean greater understanding of the 

process and knowledge of the trade-offs involved, thereby enhancing traceability. In this way, a DM can make 

a more informed choice of the level of trade-off that is most suitable for them.  

Additionally, INSITE allows a DM to set constraints relating to the amount of inconsistency reduction 

they are seeking to achieve as well as the amount of alteration they are willing to tolerate. In INSITE constraints 

can be utilised in an interactive iterative manner. An initial search can reveal to the DM the nature of the 

objective space regarding inconsistency reduction for their chosen objectives. Informed by this knowledge, the 

DM can then set feasible (and achievable) constraints to the problem. Constraints can then be iteratively added 

to drill down into the objective space to aid the DM in selecting a single solution. Furthermore, INSITE seeks 

to alter judgments in such a way that the judgments maintain the original scale utilised by the DM during 

judgment elicitation, allowing a DM to more easily discern how their judgments have altered.  

INSITE is independent of a specific prioritization method, so any method can be utilised to derive a 

ranking from an Altered Solution found, enabling INSITE to be adaptive to different scenarios and DM 

preferences. INSITE implements the 1-9 scale to elicit judgments (this scale is utilised within our examples) 

however the approach is independent of a specific scale and could be extended to be used with any bounded 

scale.  

 

The stages of INSITE, shown in Figure 1, can be summarized as follows: 

 

1. The number of elements of the problem is defined; 

 

2. Judgments are elicited from the DM pertaining to their preferences between the elements; 

 

3. The objectives for the MOO process are selected by the DM consisting of one or more measures of 

compromise objectives (see Section 3.2) and one or more inconsistency measure objectives (see 

Section 2.1.1); 

 

4. The set of objectives are then utilised within a MOO framework to find the set of trade-off Altered 

Solutions between the objectives, see Section 3.3; 
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5. Analysis of the set of Altered Solutions can then be performed to aid the DM towards selection of a 

single solution from the set of solutions found. Such analysis can be performed via: 

 

i. Gleaning knowledge of the trade-offs between the chosen objectives of solutions in the objective 

space, and of the nature of the inconsistency reduction and the compromise to facilitate it. 

Inspection of, and comparisons between, the solutions found can be performed to aid a DM in 

selection of a final solution. Additionally, such analysis of the nature of the trade-off front for the 

problem may aid a DM in recalibrating their goals as to what are achievable levels of reduction 

for various amounts of alteration; 

 

ii. Through analysis of the set of found Altered Solutions, a DM can iteratively add feasible 

constraints to gradually drill down to a sub-region of the objective space to help select a final 

solution; 

 

 
Figure 1: Flowchart of INSITE stages 

3.2 Measures of Compromise  
 

During inconsistency reduction a DM’s judgments will be altered to reduce the amount of inconsistency 

present. INSITE utilises the Measures of Compromise (Abel, Mikhailov, & Keane, 2013) to calculate alteration 
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to a set of judgments in ways that are semantically meaningful and cognate for a DM. Measures that are 

meaningful to a DM should aid in making inconsistency reduction more understandable, auditable and 

traceable, and aid a DM in setting constraints that are more informed. The use of the measures of compromise 

provide a user with choice over how preservation of the original judgment information is to be defined, to thus 

be most appropriate to him/her, with measures that are semantically meaningful and interpretable to his/her 

original judgments. In this way INSITE allows a DM to choose between, for example, whether, “fewer 

judgments changing (perhaps a lot)” or “many judgments changing a little” constitutes better preservation of 

the original judgment information for them. The measures of compromise are measures between two sets of 

judgments, whereas measures such as Least Absolute Error (Choo & Wedley, 2004) and Minimum Violations 

(Golany & Kress, 1993) are generally utilized to refer to measurements between a set of judgments and a 

derived preference vector. Hence, slightly different names are utilized here to differentiate, looking to 

emphasise the measures of compromises’ application to judgment set to judgment set comparison.  

Given a problem with N elements we elicit PCs from a DM of each pair of elements within the N set of 

elements to construct a PCM. Due to the reciprocal property and self-comparisons of a set of judgments, the 

minimum number of judgments J required to construct a complete PCM is 𝑁(𝑁 − 1)/2. From a completed 

PCM we extract a set of J judgments that will contain all the information to reconstruct the PCM. J is selected 

as the top triangle of a completed PCM as from this set of judgments the whole PCM can be reconstructed. 

Therefore, J is the set of judgments from the PCM without self-comparison and reciprocal judgments. J is 

chosen as the upper triangle of a completed PCM as it will contain all information such that all the self-

comparison and reciprocal judgments’ information can be inferred from it. Judgments themselves, from which 

a completed PCM is constructed, may be elicited from a DM in various ways to suit their preferences; from 

the completed PCM, the top triangle of judgments is then selected to define J. Given an Original judgment set 

(O) represented as a set of judgments {𝑜1, 𝑜2, … , 𝑜𝐽} of cardinality J, we look to measure the amount of 

alteration between O and a second Altered judgment set (A) of judgments {𝑎1, 𝑎2, … , 𝑎𝐽}, via a measure of 

compromise. The Measures of Compromise are repeated here for clarity and completeness: 

 

1. Number of Judgment Violations (NJV): a measure of the number of the original set of judgments that 

have changed, where 𝛿 evaluates to 0 or 1 for each Boolean evaluation. 

 

 

𝑁𝐽𝑉 =  ∑𝛿(𝑜𝑗 ≠ 𝑎𝑗)

𝐽

𝑗=1

 

 

(6) 

  

NJV may be useful when a DM is seeking solely to look to minimise the number of their judgments that 

change in the pursuit of inconsistency reduction. 

 

2. Total Judgment Deviation (TJD): a measure of the total amount of change between each judgment from 

the original judgments and an altered judgment set. 

 

 

𝑇𝐽𝐷 =  ∑|𝑜𝑗 − 𝑎𝑗|

𝐽

𝑗=1

 

 

(7) 

 

TJD may be useful when a DM is seeking to minimize the total amount of steps along the judgment scale 

their judgments undergo in pursuit of inconsistency reduction. 

 

3. Squared Total Judgment Deviation (STJD): a variant of TJD that gives more emphasis to larger amounts 

of deviation to a judgment.  

 

𝑆𝑇𝐽𝐷 =  ∑(𝑜𝑗 − 𝑎𝑗)
2

𝐽

𝑗=1

 

 

(8) 

 

STJD may be useful when a DM is seeking to avoid large judgment changes in the pursuit of inconsistency 

reduction. 
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4. Number of Judgment Reversals (NJR): a measure of the number of judgments from the original set 

whose preference has been inverted, with consideration of half reversals. Given an original judgment 

between elements A and B for which A is preferred to B, A ≻ B, (therefore with a value from the 1-9 scale 

greater than 1). If within the altered judgment set, B is now preferred to A, A ≺ B, (therefore with a value 

from the 1-9 scale of less than 1) then a reversal has occurred. Similarly, if instead for the original judgment 

between elements A and B, B is preferred to A (A ≺ B) and in the altered judgment set A is now preferred 

to B (A ≻ B) then a reversal has occurred. Moreover, if in the original judgment the DM stated equal 

preference between elements A and B, A ∼ B, (with a value from the 1-9 scale of 1) and then, within the 

altered set, either A is now preferred to B or B is now preferred to A (therefore no longer a value of 1) 

then a half reversal has occurred. Furthermore, if the original judgment between elements A and B are not 

of equal preference (so either A ≻ B or A ≺ B), and then within the altered set the elements are now 

equally preferred (A ∼ B), then a half reversal has occurred.   

 

 

 

 

 

where 

 

𝑁𝐽𝑅 =  ∑𝑅𝑗

𝐽

𝑗=1

 

 

 

𝑅𝑗

{
 
 

 
 
    1: 𝑜𝑖 > 1  𝑎𝑛𝑑 𝑎𝑖 > 1
  1: 𝑜𝑖 < 1  𝑎𝑛𝑑 𝑎𝑖 < 1
0.5: 𝑜𝑖 = 1 𝑎𝑛𝑑 𝑎𝑖 ≠ 1
0.5: 𝑜𝑖 ≠ 1 𝑎𝑛𝑑 𝑎𝑖 = 1
0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 

 

 

(9) 

NJR may be useful for a DM seeking solely to minimise the number of preference changes to their 

judgments in the pursuit of inconsistency reduction. 

3.3 Multi-objective optimisation model 
 

Many real-world problems consist of multiple, frequently conflicting, objectives. Such problems may be 

tackled by weighting each objective function and then combining them together to create a single objective. 

However, such an approach requires that the weights of each objective are defined by the DM prior to 

optimisation and reveal no knowledge regarding the relationship and nature of conflict between the objectives. 

Alternatively, the objectives can be optimised simultaneously. In such an approach there will not be a single 

solution - due to the conflicting nature of the objectives - instead a range of possible trade-off solutions will 

exist. Without additional information all solutions are equally preferred (Coello, 2006).  

When evaluating solutions with respect to multiple objectives we can distinguish between them via the 

notion of Pareto dominance. The set of trade-off solutions to a multiple objective problem are termed Pareto 

optimal solutions. For each such solution any improvement in one objective will result in a decrease within 

one or more of the other objectives. This set of solutions map out the trade-off front of the problem termed the 

Pareto front. Solutions can be compared based upon their dominance with respect to the set of objectives. 

Given 2 individuals  I1and  I2: For the set of objectives O, I1 is said to dominate I2 if for at least one of the 

objectives it has a greater value than I2 and for the other objectives it has an equal to or greater than value 

compared to I2. (Here assuming maximization objectives). 

 

 𝑂(𝐼1) ≥ 𝑂(𝐼2) (10) 

 

I1 is said to strongly dominate I2 if for all the objectives it has a greater value than the I2 (again assuming 

maximization objectives). This stronger form of dominance is denoted via:    

 

 𝑂(𝐼1) > 𝑂(𝐼2) (11) 

 

Solutions which are not dominated by any other solutions are termed non-dominated solutions. 

 

INSITE seeks to reduce inconsistency within a set of judgments through modelling inconsistency 

measures and alteration to the judgments as separate objectives (chosen by the DM) via MOO. Due to the 
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conflicting nature between objectives of inconsistency and compromise measures, there will not exist a single 

solution that optimizes all objectives; rather a range of non-dominated solutions will exist. Given a problem 

with n elements and a complete n by n PCM of judgments from a DM, a Judgment Set of Original judgments 

O of cardinality J can be selected, containing enough information to reconstruct the whole of the PCM. We 

seek the set of non-dominated Altered Solutions for the chosen objectives. We represent each Altered solution 

as a judgment set of cardinality J, denoted as A = {𝑎1, 𝑎2, … , 𝑎𝐽} obtained by minimising the set of objectives Λ. 

The MOO problem can be formulated as: 

 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝛬]  (12) 

where 
 𝛬 = {𝐸, 𝐵}  

 

The set of objectives Λ consists of two subsets. The first subset E represents one or more measures of 

compromise objectives chosen by the DM; the second subset B represents one or more measures of 

inconsistency chosen by the DM. INSITE additionally allows a DM to set constraints both upon the amount 

of inconsistency reduction they are seeking and upon the amount of compromise they are willing to tolerate in 

pursuit of reducing inconsistency. Setting constraints upon inconsistency objectives allows a DM to set bounds 

upon the amount of inconsistency permitted within altered solutions. Thus, a constraint  𝑓𝑗 upon an 

inconsistency objective 𝛽𝑗 from objective subset 𝛣 is defined as: 

 
 𝛽𝑗(𝐴)  ≤ 𝑓𝑗 (13) 

 

For example, when the CR measure is chosen as an objective by a DM, he/she can additionally choose to 

define a constraint upon the upper value of the objective such as 0.1 (thus following Saaty’s recommendation 

that acceptable PCMs should have a CR value no greater than 0.1) or any other threshold value of the DM’s 

choosing. Setting constraints upon measures of compromise objectives allow a DM to set bounds upon the 

amount of compromise they are willing to accept to reduce inconsistency. Given a constraint of 𝑐𝑖 upon 

measure of compromise objective 𝜀𝑗 from objective subset 𝐸, the following constraint could be defined: 

 

 𝜀𝑖(𝐴)  ≤ 𝑐𝑖 (14) 

 

For example, when the measure of compromise NJR is chosen as an objective by a DM, they could additionally 

define a constraint upon the objective of 3, in this way seeking only to find Altered Solutions with 3 reversals 

or less to their original judgments. So, the constrained MOO problem can be formulated as:  

   

                                  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝐸, 𝐵}  (15) 

subject to 
 𝜀𝑖(𝐴)  ≤ 𝑐𝑖 

𝛽𝑗(𝐴)  ≤ 𝑓𝑗 

 

for i=1,2,…,p, and  j=1,2,…,q 

 

 

where E is of size p and B is of size q. 

 

INSITE utilises one or more measures of inconsistency and one or more measures of compromise as objectives. 

The Consistency Measures Objectives are CR (Saaty, 1977), L, CM (Koczkodaj, 1993),  GCI (Aguarón & 

Moreno-Jiménez, 2003) (for discussion of these see Section 2.1.1) and the Measures of Compromise 

Objectives are NJV, TJD, STJD, NJR (for definitions and discussions of these see Section 3.2). Furthermore, 

tackling the problem via a MOO framework allows for additional devised measures of inconsistency to be 

implemented within INSITE. Therefore, other inconsistency measures could subsequently be implemented and 

employed within INSITE for utilisation and comparison; similarly, additional measures of compromise that 

are defined could be straightforwardly added to INSITE. Such additional objective measures would only need 

to define an evaluation function to be incorporable into INSITE.  
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3.4 Implementation of a Multi-objective Genetic Algorithm in INSITE 
 

For many real-world multi-objective operational research problems, Evolutionary Computing approaches 

such as Multi-Objective Genetic Algorithms (MOGA) can be used to swiftly arrive at a high quality 

approximation of the solution (Gen, Cheng, & Lin, 2008).  In INSITE, a MOGA is utilized to seek a set of 

trade-off solutions, with respect to the set of chosen objectives, which are also as evenly spread along the front 

as possible. Within INSITE the Multi-Objective Cellular Algorithm (MOCell) (Alba et al., 2007) is utilized. 

In MOCell the population is structured into a two-dimensional grid and individuals are only permitted to mate 

with those individuals close to them in the gird, thus imposing restrictive mating. Offspring that dominate a 

parent replace the parent in its position in the grid (Alba et al., 2007). MOCell utilizes an archive, which retains 

the best solutions found so far - regarding their Pareto dominance with additional consideration of the even 

spread of non-dominated solutions across the surface of the trade-off front - and allows the main population to 

concentrate upon exploring the objective space. An archive has a size parameter, representing the maximum 

number of solutions the archive can contain, which allows the DM to define the maximum number of solutions 

to be presented by INSITE. Furthermore, after each generation a defined number of solutions from the archive 

are added to random positions in the population replacing the individuals in those locations. MOCell gives a 

DM control of the maximum number of solutions that may be returned, all of which will be non-dominated.  

Within MOGAs constraints can be considered through various strategies such as discarding infeasible 

solutions, reducing the fitness of infeasible solutions or repairing infeasible solutions to be feasible; see 

(Coello, 1999) for a review. Discarding infeasible solutions could result in solutions of high quality Pareto 

dominance, that are only just infeasible, being lost. Strategies to repair infeasible solutions introduce added 

complexity regarding defining repair functions. Therefore, in INSITE we implement constraints by reducing 

the fitness of infeasible solutions to push the population towards the feasible region of the objective space, and 

in addition by ensuring that only feasible solutions are added to the archive.  

INSITE considers any constraints, firstly in the evaluation process, to favour feasible individuals over 

infeasible solutions and penalise constraint violating solutions. INSITE implements the Constrained Pareto 

Dominance (Deb, Pratap, Agarwal, & Meyarivan, 2002) as defined for constraint handling in Non-dominated 

Sorting Genetic Algorithm II (NSGAII). Within Constrained Pareto Dominance feasible solutions are favoured 

over infeasible solutions pushing the population’s individuals towards the feasible area of the Pareto front, see 

(Deb et al., 2002). INSITE additionally implements a hard constraint upon the archive to allow only feasible 

solutions to be added to the archive, thus ensuring that only feasible solutions will be presented to the DM. 

This additionally enhances the feedback operation of MOCell as only feasible solutions will be fed back from 

the archive into the population helping to further steer the population towards the feasible region of the 

objective space. Use of a MOGA facilities the finding of a set of trade-off solutions in near-real time. The 

nature of the surfaces of the trade-off fronts, from the possible objectives utilised within INSITE, allows the 

MOGA to swiftly find a set of trade-off solutions. 

For the examples that follow in the next section, the MOCell parameter settings are: population size of 

100 (10 x 10 grid); maximum evaluations count of 25,000; selection is performed via binary tournament with 

single point crossover (with crossover probability 0.9) and bit flip mutation (with probability 0.01) employed. 

The size of the archive is definable by the DM and stated in each example (with the feedback value set to 25% 

of the size of the archive). INSITE is independent of a specific prioritization method, so any method can be 

utilised to derive a ranking from Altered Solutions found. Where preference vectors are calculated in the 

examples that follow the GM prioritization method (Crawford, 1987) is utilized. In GM a preference vector is 

derived via the product of each row raised to the inverse power of 𝑛. These weights are then usually normalized 

to sum to 1; see (Crawford, 1987). 

4 Numerical Examples 
 

In this section, step-by-step examples of INSITE are presented including comparisons between INSITE 

and in total four other inconsistency-reducing approaches.   

 

1. Example 1 explores a PCM taken from (Saaty, 1990) and compares INSITE to three other 

approaches for inconsistency reduction; 

 

2. Example 2 explores a PCM taken from (Saaty, 2000) and compares INSITE to a fourth approach 

for inconsistency reduction; 
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3. Example 3 takes a PCM with high levels of both cardinal and ordinal inconsistency and explores 

how INSITE allows a DM to use different inconsistency measures to suit their preferences; 

 

4. Example 4 shows how a DM can iteratively add constraints to aid in selecting a single solution; 

 

5. Example 5 explores using both multiple inconsistency objectives and using multiple measures of 

compromise simultaneously. 

4.1 Example 1: Comparisons using Saaty's 'buying a house' matrix  
 

Example 1 uses an 8 element PCM, shown in Table 1; the example is taken from (Saaty, 1990), and has 

been used  by Xu and Wei (1999), Cao et al. (2008) and Girsang et al. (2015). The initial CR is 0.17, thus 

greater than Saaty’s 0.1 threshold of acceptance. All three referenced approaches look to derive an altered 

PCM solution that has a CR value less than 0.1. We compare their solutions against INSITE. 

 

Table 1: Example 1 PCM: [CR: 0.17] 
 

 1 2 3 4 5 6 7 8 

1 1 5 3 7 6 6 1/3 1/4 

2 1/5 1 1/3 5 3 3 1/5 1/7 

3 1/3 3 1 6 3 4 6 1/5 

4 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 

5 1/6 1/3 1/3 3 1 1/2 1/5 1/6 

6 1/6 1/3 1/4 4 2 1 1/5 1/6 

7 3 5 1/6 7 5 5 1 1/2 

8 4 7 5 8 6 6 2 1 

 

Tackling this problem with INSITE given two DM-chosen objectives of CR and TJD and an archive size of 

10, the objective space of solutions found is shown in Figure 2: Left. A dashed vertical line shows the CR 

threshold of 0.1. 

 

 

 
 

Figure 2: Left: Example 1 Objective Space CR and TJD objectives, Right: Example 1 Objective Space CR 

and NJV objectives 

 

The DM is then free to review and select any of the 10 solutions found. For instance, the DM could select the 

first solution along the trade-off front with a CR value less than 0.1, identified via a dotted circle in Figure 2: 

Left, the PCM of which is shown in Table 2. From this, a DM has a solution with CR less than 0.1 (0.089) and 
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a meaningful measure of the amount of alteration to reach this – from the TJD value of 7, the DM sees that a 

total of 7 judgment scale steps of compromise were needed to find this solution.  

 

Table 2: Example 1 possible INSITE solution [CR: 0.089 TJD: 7] 
 

 1 2 3 4 5 6 7 8 

1 1 5 3 7 6 6 1 1/4 

2 1/5 1 1/3 5 3 3 1/4 1/7 

3 1/3 3 1 6 3 4 3 1/5 

4 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 

5 1/6 1/3 1/3 3 1 1 1/5 1/6 

6 1/6 1/3 1/4 4 1 1 1/5 1/6 

7 1 4 1/3 7 5 5 1 1/2 

8 4 7 5 8 6 6 2 1 

 

Additionally in Figure 2: Left we have plotted the solutions found for this problem from the approaches in (Xu 

& Wei, 1999), (Cao et al., 2008) and (Girsang et al., 2015), the PCMs of which are shown in Tables 3, 4 and 

5 respectively.  

 

 

Table 3: Example 1 solution from Xu and Wei  (Xu & Wei, 1999) [CR: 0.097 TJD: 14.219] 
 

 1 2 3 4 5 6 7 8 

1 1 4.52 2.34 7.52 5.89 5.69 0.43 0.29 

2 0.22 1 0.33 4.52 2.67 2.58 0.22 0.15 

3 0.43 3.07 1 6.75 3.46 4.19 4.16 0.25 

4 0.13 0.22 0.15 1 0.37 0.29 0.13 0.10 

5 0.17 0.37 0.29 2.68 1 0.56 0.19 0.15 

6 0.18 0.39 0.23 3.48 1.78 1 0.20 0.15 

7 2.35 4.49 0.24 7.48 5.07 4.90 1 0.50 

8 3.42 6.79 4.02 9.62 6.78 6.55 1.99 1 
 

 

Table 4: Example 1 solution from Cao et al (Cao et al., 2008) [CR: 0.099 TJD:15.63] 
 

 1 2 3 4 5 6 7 8 

1 1 4.44 2.37 7.67 5.86 5.61 0.42 0.30 

2 0.23 1 0.32 4.42 2.62 2.54 0.23 0.15 

3 0.42 3.12 1 6.92 3.54 4.28 4.51 0.25 

4 0.13 0.23 0.15 1 0.38 0.29 0.13 0.10 

5 0.17 0.38 0.28 2.63 1 0.57 0.19 0.14 

6 0.18 0.39 0.23 3.42 1.75 1 0.21 0.15 

7 2.38 4.41 0.23 7.61 5.10 4.87 1 0.50 

8 3.37 6.73 4.02 9.71 6.92 6.70 1.99 1 

 

 

Figure 2: Left shows that the three solutions found via the referenced approaches are dominated with 

respect to the trade-off front mapped out by the solutions found by INSITE with regards to CR and the total 

amount of deviation undergone by the original judgments. Additionally, from the three referenced approaches 

solutions it will be more difficult for a DM to discern how their judgments have changed as the solutions 

contain values outside the originally used scale. Although solutions found via Girsang et al. find judgments 

within the bounded range of the utilized scale the judgments fall between the scale steps making interpretability 

difficult by a DM, regarding how their judgments have changed.  
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Table 5: Example 1 solution from (Girsang et al., 2015) [CR: 0.099 TJD: 11.71] 
 

 1 2 3 4 5 6 7 8 

1 
1 4.20 2.40 7.40 5.80 5.40 0.42 0.29 

2 
0.24 1 0.33 4.40 2.60 2.40 0.25 0.15 

3 
0.42 3.00 1 6.80 3.40 4.20 4.40 0.24 

4 
0.14 0.23 0.15 1 0.36 0.29 0.14 0.11 

5 
0.17 0.38 0.29 2.80 1 0.56 0.20 0.15 

6 
0.19 0.42 0.24 3.40 1.80 1 0.20 0.15 

7 
2.40 4.00 0.23 7.00 5.00 5.00 1 0.50 

8 
3.40 6.80 4.20 9.00 6.80 6.80 2.00 1 

 

 

A total deviation measure is calculated for these solutions based upon the amount of scale steps that each 

modified judgment has undergone, the sum of which is used to plot these solutions within the objective space 

in Figure 2: Left. For example, taking the judgment between elements 3 and 7, for the solution in (Xu & Wei, 

1999) in Tables 1 and 3, the judgment of 6 has changed to a judgment of 4.155, which in terms of deviation 

scale steps we calculate as 1.845 steps. Similarly, for fractional judgments we determine the deviation again 

as the amount of scale steps that occur. For example, taking the judgment between elements 3 and 8, for the 

solution in  (Xu & Wei, 1999) from Tables 1 and 3 the judgment of 1/5 (0.2) has altered to 0.249 which in 

terms of deviation scale steps represents 0.976 steps. We calculate the total deviation of these three referenced 

approaches’ solutions as 14.219 for Xu & Wei, 15.63 for Cao et al. and 11.71 for Girsang et al.; all three give 

greater amounts of total deviation than the selected solution found by INSITE in Table 2. Here INSITE has 

sought a set of trade-off solutions with respect to the pair of user-chosen objectives of CR and TJD, therefore 

its concern was to find trade-off solutions where preservation of the original judgments was measured with 

respect to the total judgement deviation.  

Further analysis of the results can be performed regarding the number of judgments that require change 

to find these solutions; INSITE is able to find solutions will small numbers of the initial judgments changing: 

in the solution found in Table 2 only four of the original judgments have been altered. Conversely, in the 

solutions found via the other referenced approaches large numbers of judgment changes occur: 28 for Xu & 

Wei and Cao et al., and 23 for Girsang et al. respectively. Such large numbers of original judgment changes 

again make it harder for a DM to analyse an altered set of judgments and discern how their judgments have 

been altered to achieve reduced inconsistency. This analysis is of a trade-off solution that has been found by 

INSTIE with respect to the pair of user-chosen objectives of CR and TJD (therefore not from explicitly looking 

to optimise with respect to the number of judgments that have changed). 

However, the use of the measures of compromise by INSITE gives a DM flexibility regarding how 

alteration to their judgments is measured allowing the user to define what preservation of the original judgment 

information is desirable for them. For example, given a scenario where a DM seeks solutions with low 

inconsistency whilst also looking to specifically minimise the number of judgments that change. By utilizing 

objectives of CR, and this time NJV instead of TJD for the above problem, INSITE finds a set of trade-off 

solutions, shown in Figure 2: Right along with the plotted solutions of the referenced approaches. Here we 

observe that INSITE finds a trade-off front of solutions with at one edge a solution of the most amount of 

inconsistency reduction possible from a single judgment change, and at the other edge a solution of the 

minimum number of changed judgment required to remove all inconsistency. The DM is then free to review 

and select any of the 10 solutions found. For instance, the DM could select the first solution along the trade-

off front with a CR value less than 0.1, from this, the DM has a solution with CR less than 0.1 (0.083) and for 

which only a single judgment from the original set has been altered.  

4.2 Example 2: Comparison using Saaty's ‘school selection’ matrix 
 

Example 2 uses a 6 element PCM, shown in Table 6, taken from (Saaty, 2000), and has been used by Zhang 

et al. (2014). The initial CR is 0.23, thus again greater than Saaty’s 0.1 threshold of acceptance. Zhang et al. 

look to find a single solution with reduced inconsistency. We compare their solution against INSITE. 
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Table 6: Example 2 PCM [CR: 0.23] 

 

 1 2 3 4 5 6 

1 1 4 3 1 3 4 

2 1/4 1 7 3 1/5 1 

3 1/3 1/7 1 1/5 1/5 1/6 

4 1 1/3 5 1 1 1/3 

5 1/3 5 5 1 1 3 

6 1/4 1 6 3 1/3 1 

 

By tackling this problem with INSITE given two DM-chosen objectives of CR and TJD and an archive 

size of 10, the objective space of solutions found is shown in Figure 3: Left. A dashed vertical line shows the 

CR threshold of 0.1. In this objective space we have also plotted the solution from Zhang et al., which has CR 

0.03 and TJD 20.64; the PCM from their solution is shown in Table 7. From the set of trade-off solutions found 

from INSITE, the DM is able to glean information about the problem and the trade-offs involved in reducing 

inconsistency within their judgments, which is not possible when seeking only a single solution. From Figure 

3: Left we observe, as  previously, that INSITE is able to map out a trade-off front of solutions that dominates 

the solution found from the compared approach, with regards to CR and the total amount of deviation 

undergone by the original judgments. Furthermore, the judgments found for the Zhang et al. solution fall 

outside of the original scale utilized making it harder for a DM to discern how their judgments have changed. 

 

 
 

Figure 3: Left: Example 2 Objective Space CR and TJD objectives, Right: Example 2 Objective Space CR 

and NJR objectives 

 

Table 7: Example 2 solution from (Zhang et al., 2014) [CR: 0.03 TJD: 20.64] 

 

  1     2     3     4     5     6     

1     1.00 2.26 4.58 1.95 1.31 2.69 

2     0.44 1.00 4.96 2.34 0.34 1.19 

3     0.22 0.20 1.00 0.35 0.15 0.26 

4     0.51 0.43 2.87 1.00 0.43 0.51 

5     0.76 2.93 6.66 2.32 1.00 2.84 

6     0.37 0.84 3.91 1.96 0.35 1.00 

 

The DM can review and select any of the 10 solutions found by INSITE. The use of a measure of compromise, 

to measure alteration, enables the DM to compare the solutions found via relevant, and meaningful measures 

regarding the amount of alteration needed to reach the CR value of each solution. For example, the DM could 

select the solution identified in Figure 3: Left via a dotted circle, the PCM of which is shown in Table 8. From 
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this, the DM has a solution that dominates the solution found via Zhang et al. with a smaller CR value and a 

smaller TJD value. Here the INSITE solution has CR of 0.02 and TJD 17.  

 

Table 8: Example 2 possible INSITE solution [CR: 0.02 TJD: 17]  

 

 1 2 3 4 5 6 

1     1 4 8 2 3 4 

2     1/4 1 7 1 1 1 

3     1/8 1/7 1 1/5 1/5 1/5 

4     1/2 1 5 1 1 1 

5     1/3 1 5 1 1 1 

6     1/4 1 5 1 1 1 

 

INSITE gives a DM flexibility regarding how alteration to their judgments is measured enabling a use 

scenario where a DM seeks solutions with low CR whilst also looking to minimise the number of judgment 

reversals, through utilizing NJR as an objective instead of TJD. For the above problem, utilising the objectives 

of CR and NJR INSITE finds a set of trade-off solutions, shown in Figure 3: Right, along with the solution 

found from the Zhang et al. approach. Here we observe that INSITE finds a trade-off front of solutions with at 

one edge a solution of the most amount of inconsistency reduction possible without any judgment reversals, 

and at the other edge a solution of the minimum number of reversals required to remove all inconsistency. 

Furthermore, we observe that the trade-off front mapped out by the solutions found via INSITE dominates the 

Zhang solution, with respect to the DM’s chosen needs, here of CR and the number of judgment reversals.  

4.3 Example 3: Inconsistency measures 
 

Next, we present an example with high initial levels of cardinal and ordinal inconsistency to illustrate 

how different inconsistency measures of a DM’s choosing can be utilised within INSITE. A PCM for a 9 

element problem is shown in Table 9, the initial inconsistency measure are CR: 0.76, L: 9, CM: 0.99 and GCI: 

50.8. To seek inconsistency reduction via INSITE a DM can choose an inconsistency measure of their 

preference. For example, if the DM seeks to reduce cardinal inconsistency and wishes to utilise the CR measure 

they can select CR as an objective. If further the DM chooses STJD as a measure of compromise objective and 

an archive of size 10, the solution space is shown in Figure 4: Left. From this, a DM can see that a large amount 

of alteration is required to find a solution below the CR threshold of 0.1.  

 

Table 9: Example 3 PCM 

  

 1 2 3 4 5 6 7 8 9 

1 1 1/8 1/3 1/7 1/3 1 8 1/9 1/4 

2 8 1 5 1/2 1/3 4 3 7 5 

3 3 1/5 1 2 1/2 1/6 7 7 1/9 

4 7 2 1/2 1 1 5 2 2 1/9 

5 3 3 2 1 1 7 6 5 6 

6 1 1/4 6 1/5 1/7 1 2 1/6 1 

7 1/8 1/3 1/7 1/2 1/6 1/2 1 1 8 

8 9 1/7 1/7 1/2 1/5 6 1 1 1/8 

9 4 1/5 9 9 1/6 1 1/8 8 1 

 

Alternatively, if a DM seeks to reduce the number of cycles within their judgments, being more interested 

in ordinal inconsistency reduction, then they can instead choose L as an inconsistency objective. Given again 

that the DM chooses STJD as a measure of compromise objective and an archive size of 10, the solution space 

found is shown in Figure 4: Right. From this, we see the shape of the objective space across the range of values 

of L for the minimal amount of STJD. We observe a large jump in the amount of alteration to reduce the 

number of cycles from 4 to 3 and again to reduce the number of cycles from 1 to 0.  Such analysis of the 
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objective space should help a DM to better understand the nature of inconsistency reduction for their judgments 

and make a more informed choice regarding reducing inconsistency. 

 
Figure 4: Example 3, Left: CR and STJD objectives. Right: L and STJD objectives 

 

Conversely, if a DM is concerned with reducing inconsistency by looking to reduce the largest 

inconsistent judgment triple then the CM can instead be chosen as an inconsistency objective. Given that the 

DM again chooses STJD as a measure of compromise objective and an archive size of 10, the solution space 

found is shown in Figure 5: Left. From this objective space we observe the convex nature of the front for this 

objective pair. We further observe that there is little reduction in CM towards the edge of the trade-off front 

near the initial judgments yet, at the other edge of the front larger decreases in CM are achieved for lower 

amounts of additional compromise. 

If a DM instead wishes to utilise a distance-based inconsistency measure of the distance between judgments 

and a derived preference vector, then the GCI can be chosen as the inconsistency measure. The solution space 

with STJD as a measure of compromise objective and an archive size of 10 is shown in Figure 5: Right. 

Additionally plotted as a vertical dotted line is the GCI threshold measure (Aguarón & Moreno-Jiménez, 2003) 

(0.37 when n>5). From this plot and Figure 4: Left the strong relationship between CR and GCI (Aguarón & 

Moreno-Jiménez, 2003) is clearly conveyed visually to the DM. 

 

 
Figure 5: Example 3, Left: CM and STJD objectives. Right: GCI and STJD objectives 

 

This example shows how INSITE is versatile to the preferences of a DM regarding how inconsistency will 

be defined and measured in their judgments. Furthermore, we see how INSITE allows for knowledge of the 

nature of the trade-offs involved in the problem to be revealed to the DM, thus giving then a richer 

understanding of both the process and the outcomes.    
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4.4 Example 4: Interactively adding constraints 
  

This example explores how interactive analysis of an objective space through iteratively adding 

constraints can aid a DM in the selection of a single solution. DM judgments for a 5-element problem and a 

preference vector derived using the GM prioritization method are shown in Table 10 along with the initial CR 

inconsistency measure. Then, given a DM chooses objectives of TJD and CR and an archive size of 10, the 

initial objective space is shown in Figure 6. 

 

Table 10: Example 4 PCM [CR: 1.08] 

  

  1 2 3 4 5 w 

1 1 8 6 1/2 1/5 0.25 

2 1/8 1 7 2 7 0.30 

3 1/6 1/7 1 5 1/2 0.10 

4 2 1/2 1/5 1 1/2 0.12 

5 5 1/7 2 2 1 0.23 

 

From this the DM can get an overview of the objective space and the nature of the trade-offs between the 

objectives over the front for the problem, helping them to then add feasible constraints. For example, the DM 

may conjecture that it is feasible to seek a solution whose CR value is less than 0.1, so he/she sets a constraint 

upon CR to only find solutions with CR of 0.1 or less. Additionally, to focus upon this area, they may increase 

the archive size to a maximum of 20 and perform the search with these new parameters and constraint. The 

objective space with this added constraint is shown in Figure 7: Left with the constraint edge shown as a dotted 

red line. From this constrained objective space, the DM might further conjecture that the amount of deviation 

increase past 20 then yields little further reduction in inconsistency. Therefore, they may decide to add an 

additional constraint upon the upper amount of deviation to be less than 20 (so 19 or less). The new constrained 

objective space with this additional constraint added is shown in Figure 7: Right. From this second constrained 

objective space the DM can observe there are only two solutions, with TJD values 18 and 19 respectively. The 

DM can then analyse these solutions (Table 11), along with the values of the objectives and their preference 

vector rankings of the elements (again derived using the GM prioritization method).  

 

 
Figure 6: Example 4 Objective Space. CR and TJD objectives 

 

By analysing the visualization of the objective space, the DM can clearly see the total deviation compromise 

needed to achieve these solutions, and that both have attained over 90% reduction in initial CR inconsistency. 

Regarding the ordinal rankings of the preference vectors compared to the initial judgments preference vector, 

only 1 change has occurred - between elements 3 and 4 - for both solutions. From such analysis, the DM may 

conjecture that for the TJD 19 solution the additional reduction in inconsistency is worth the additional 

deviation step. Therefore, the solution with inconsistency of CR 0.058 and TJD 19 is chosen. 
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Figure 7: Example 4, Left: Objective Space with CR constraint, Right: Objective space with CR and TJD 

constraints 

 

 

Table 11: Example 4 Constrained objective space solutions 

 

TJD:18 CR:0.085  
 TJD:19 CR:0.058 

 1 2 3 4 5 w  
  1 2 3 4 5 w 

1 1 1 6 1 1 0.24  
 1 1 1 6 1 2 0.27 

2 1 1 7 2 7 0.41  
 2 1 1 7 2 7 0.40 

3 1/6 1/7 1 1/2 1/2 0.06  
 3 1/6 1/7 1 1/2 1/2 0.06 

4 1 2 2 1 1 0.16  
 4 1 1/2 2 1 1 0.16 

5 1 1/7 2 1 1 0.13  
 5 1/2 1/7 2 1 1 0.11 

 

4.5 Example 5: Larger objective sets 
 

INSITE is not constrained to objective sets of size 2; in this example we illustrate how a DM can chose 

larger objective sets using the judgments from Example 4 shown in Table 10. A DM could utilise multiple 

measures of compromise simultaneously, for example, they could choose to use 3 objectives of CR, TJD and 

NJV. From this objective set, INSITE will look for Altered Solutions with low CR values, with minimum 

deviation and look to minimise the number of judgments that change. The 3-dimensional objective space for 

this objective set with a large archive size defined to help emphasise the nature of the front is shown with 

respect to CR and NJV in Figure 8: Left. From this, we observe a pattern within the objective space of multiple 

solutions with the same NJV value but various levels of CR; these solutions represent different levels of 

deviation for the same level of NJV. We see also that as CR tends towards 0 the range of CR values for 

solutions with the same NJV value decreases. A DM could additionally perform analysis between the measures 

of compromise; for example, the same 3-dimensional objective space shown with respect to TJD and NJV is 

shown in Figure 8: Right. From this, a DM can see clearly the relationship between the measures of 

compromise for this set of judgments. We see a positive correlation relationship between the measures yet for 

higher amounts of compromise this relationship appears to weaken. Additionally, for such an objective set a 

DM could add multiple constraints to for example, define thresholds on both TJD and NJV.   
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Figure 8: Example 5 Multiple measures of compromise objectives analysis 

 

A DM could also utilise multiple measures of inconsistency simultaneously. For example, say a DM 

chooses three objectives of, the TJD measure of compromise, and CR and L inconsistency measures. Here 

INSITE will look to reduce both cardinal and ordinal inconsistency simultaneously. The 3-dimensional 

objective space is shown with respect to L and TJD in Figure 9: Left. From this, we see a number of solutions 

with an L value of zero - which have all ordinal inconsistency removed but with a range of different deviation 

values. Additionally, a DM could analyse the relationship between the inconsistency measures for this 

objective space as shown with respect to CR and L in Figure 9: Right. In this view, we see how the objectives 

both converge to 0 inconsistency solutions at one edge of the objective space. However, we also observe the 

outline of two arcs of solutions from the initial judgment set edge of the front to a solution with all 

inconsistency removed, highlighted as dotted red arcs on the plot. This demonstrates the different emphases of 

the objectives of cardinal and ordinal inconsistency and the importance of flexibility to allow a DM to decide 

upon how inconsistency reduction will be measured to best suit their needs. 

 

 
Figure 9: Example 5 Multiple inconsistency measure objectives analysis 

5 Conclusions  
 

This paper has presented INSITE, an approach to reducing inconsistency within a set of PC judgments via 

MOO. INSITE seeks to optimally reduce inconsistency within a set of judgments, by modelling inconsistency 

reduction and alteration to the judgments as separate objectives, to find a set of trade-off solutions between the 

conflicting objectives. From this, a DM can glean knowledge of the trade-offs involved between inconsistency 

reduction and judgment alteration, helping facilitate an evidential, transparent, auditable and traceable process. 

Judgments are altered in such a way that they maintain the original scale utilised by a DM, thus allowing 
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him/her to more easily discern how their judgments have altered. A DM has control over the type of 

inconsistency reduction to seek, as both cardinal and/or ordinal inconsistency measures can be chosen as 

objectives. A DM also has control over how alteration is measured to meet their needs via the measures of 

compromise. Finally, a DM is able to set their own constraints relating to the amount of inconsistency reduction 

they are seeking to achieve and/or the amount of alteration they are willing to tolerate.  

Future work will investigate further traceability within MOO by investigating group aggregation of 

multiple DMs’ views, where invariably compromise is needed between different DMs’ views to reach 

consensus. Moreover, future work will look to develop the INSITE approach into a hosted online tool so as to 

be freely available as a web-based decision support tool.   
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